Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 4820-4826, 2015.
Article in Chinese | WPRIM | ID: wpr-476241

ABSTRACT

BACKGROUND:An ideal scaffold material needs appropriate degradation rate and certain mechanical properties, but the traditional colagen sponge scaffold has rapid degradation velocity and low mechanical strength, which is easy to colapse and difficult to maintain its natural form. Traditional cross-linking methods also have the problems of cytotoxicity or colagen denaturation, severely limiting the application of colagen. OBJECTIVE:To design a new cross-linking method for colagen and to optimize the self-assembly process so as to develop a colagen sponge scaffold with good mechanical properties and resistance to degradation. METHODS:Colagens were modified by self-assembly technology to prepare colagen fibrils which were then freeze-dried into fibrilar colagen sponges. Meanwhile, we optimized the conditions of self-assembly by using orthogonal experiment based on univariate analysis of the effect of initial colagen mass concentration, final phosphate concentration and pH value on the conversion yield of colagen self-assembly. RESULTS AND CONCLUSION:We optimized the conditions of self-assembly revealed that the optimum conditions to prepare colagen fibrils were determined as pH=8.0, initial colagen concentration=2 mg/mL, and final concentration of phosphate=15 mmol/L. The results of scanning electron microscope showed that fibrilar colagen sponges were characterized by refined porous structure which was connected by colagen fibrils. In addition, the fibrilar colagen sponges showed better equilibrium-sweling ratio, water retaining property and mechanical strength compared with unmodified colagen spondages (P < 0.05), to solve the problems in rapid degradation.

2.
Chinese Journal of Tissue Engineering Research ; (53): 2567-2572, 2015.
Article in Chinese | WPRIM | ID: wpr-465271

ABSTRACT

BACKGROUND:Colagen materials have good biocompatibility and biodegradability, but also had some problems such as low mechanical strength, poor resistance to degradation exposed in the process of clinical application. Numerous studies have reported that proper crosslinking could improve the disadvantage of colagen materials, regulate porous network structure, sweling and degradation of colagen materials. OBJECTIVE: To optimize carbodimide crosslinking process of colagen sponge and determine the best process conditions. METHODS:Colagen sponge was cross-linked by carbodimide for the preparation of loose and porous colagen sponge. Meanwhile, we optimized the conditions of cross-linking, in which the selected concentration of carbodimide was 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mmol/L, linking time was 2, 4, 6, 8, 12, 16, 20, 24 hours, and linking temperature was 5, 10, 15, 20, 25, 30, 35℃. We evaluated the best process conditions of colagen sponge through the aperture, porosity, water absorption, and degradation rate. RESULTS AND CONCLUSION:The optimal conditions were carbodimide concentration 50 mmol/L, crosslinking temperature 20℃,crosslinking time 6 hours. At this point, the average pore diameter of colagen sponge was 105 μm, the porosity was 79.45%, water absorption was 287.14%, and the degradation rate was 15.04% (2 days). The crosslinking of colagen sponge significantly improved its water absorption and degradation resistance.

SELECTION OF CITATIONS
SEARCH DETAIL